Free energy surfaces from single-distance information.

نویسندگان

  • Philipp Schuetz
  • René Wuttke
  • Benjamin Schuler
  • Amedeo Caflisch
چکیده

We propose a network-based method for determining basins and barriers of complex free energy surfaces (e.g., the protein folding landscape) from the time series of a single intramolecular distance. First, a network of transitions is constructed by clustering the points of the time series according to the short-time distribution of the signal. The transition network, which reflects the short-time kinetics, is then used for the iterative determination of individual basins by the minimum-cut-based free energy profile, a barrier-preserving one-dimensional projection of the free energy surface. The method is tested using the time series of a single C(β)-C(β) distance extracted from equilibrium molecular dynamics (MD) simulations of a structured peptide (20 residue three-stranded antiparallel β-sheet). Although the information of only one distance is employed to describe a system with 645 degrees of freedom, both the native state and the unfolding barrier of about 10 kJ/mol are determined with remarkable accuracy. Moreover, non-native conformers are identified by comparing long-time distributions of the same distance. To examine the applicability to single-molecule Förster resonance energy transfer (FRET) experiments, a time series of donor and acceptor photons is generated using the MD trajectory. The native state of the β-sheet peptide is determined accurately from the emulated FRET signal. Applied to real single-molecule FRET measurements on a monomeric variant of λ-repressor, the network-based method correctly identifies the folded and unfolded populations, which are clearly separated in the minimum-cut-based free energy profile.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear reconstruction of single-molecule free-energy surfaces from univariate time series.

The stable conformations and dynamical fluctuations of polymers and macromolecules are governed by the underlying single-molecule free energy surface. By integrating ideas from dynamical systems theory with nonlinear manifold learning, we have recovered single-molecule free energy surfaces from univariate time series in a single coarse-grained system observable. Using Takens' Delay Embedding Th...

متن کامل

Simulated Force Quench Dynamics Shows GB1 Protein Is Not a Two State Folder.

Single molecule force spectroscopy is a useful technique for investigating mechanically induced protein unfolding and refolding under reduced forces by monitoring the end-to-end distance of the protein. The data is often interpreted via a "two-state" model based on the assumption that the end-to-end distance alone is a good reaction coordinate and the thermodynamic behavior is then ascribed to ...

متن کامل

Surfaces and orientations: much to FRET about?

Single molecule FRET (fluorescence resonance energy transfer) is a powerful technique for detecting real-time conformational changes and molecular interactions during biological reactions. In this Account, we examine different techniques of extending observation times via immobilization and illustrate how useful biological information can be obtained from single molecule FRET time trajectories ...

متن کامل

Velocity convergence of free energy surfaces from single-molecule measurements using Jarzynski's equality.

We studied the velocity dependence of mechanical unfolding of single protein molecules with the atomic force microscope. We showed that with enough realizations, the free energy surfaces reconstructed from Jarzynski's equality converge with respect to pulling velocity, in good agreement with theory. Using the I27 domain of titin as an example, we estimated the required number of realizations fo...

متن کامل

Comment on "experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski's equality".

We used the atomic force microscope to manipulate and unfold individual molecules of the titin I27 domain and reconstructed its free energy surface using Jarzynski's equality. The free energy surface for both stretching and unfolding was reconstructed using an exact formula that relates the nonequilibrium work fluctuations to the molecular free energy. In addition, the unfolding free energy bar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 114 46  شماره 

صفحات  -

تاریخ انتشار 2010